Method Details
Details for method 'Bilateral_attention_semantic'
Method overview
name | Bilateral_attention_semantic |
challenge | pixel-level semantic labeling |
details | we use bilateral attention mechanism for semantic segmentation |
publication | Anonymous |
project page / code | |
used Cityscapes data | fine annotations |
used external data | |
runtime | 0.0141 s Nvidia Tesla V100 |
subsampling | no |
submission date | September, 2020 |
previous submissions | 1, 2 |
Average results
Metric | Value |
---|---|
IoU Classes | 76.4899 |
iIoU Classes | 55.9409 |
IoU Categories | 90.3647 |
iIoU Categories | 79.4577 |
Class results
Class | IoU | iIoU |
---|---|---|
road | 98.4219 | - |
sidewalk | 84.9274 | - |
building | 92.5435 | - |
wall | 48.0638 | - |
fence | 55.4155 | - |
pole | 65.6648 | - |
traffic light | 73.8527 | - |
traffic sign | 77.2465 | - |
vegetation | 93.257 | - |
terrain | 71.704 | - |
sky | 94.9367 | - |
person | 85.5992 | 69.7131 |
rider | 68.903 | 47.2872 |
car | 95.4002 | 89.6569 |
truck | 62.7195 | 34.7948 |
bus | 77.5014 | 50.6313 |
train | 70.9734 | 47.1676 |
motorcycle | 61.5068 | 44.0372 |
bicycle | 74.6705 | 64.239 |
Category results
Category | IoU | iIoU |
---|---|---|
flat | 98.6403 | - |
nature | 92.9416 | - |
object | 71.969 | - |
sky | 94.9367 | - |
construction | 92.9042 | - |
human | 86.1183 | 70.9903 |
vehicle | 95.0429 | 87.9251 |