Method Details
Details for method 'Bilateral_attention_semantic'
Method overview
name | Bilateral_attention_semantic |
challenge | pixel-level semantic labeling |
details | use ASSP、DCN、Depth to space model for semantic segmentation Previously listed in the benchmark table as: BiseAsspDcnDts-v1 |
publication | Anonymous |
project page / code | |
used Cityscapes data | fine annotations |
used external data | |
runtime | 0.0128 s NVIDIA Tesla V100 32GB |
subsampling | no |
submission date | September, 2020 |
previous submissions |
Average results
Metric | Value |
---|---|
IoU Classes | 74.8585 |
iIoU Classes | 53.491 |
IoU Categories | 90.1755 |
iIoU Categories | 78.6611 |
Class results
Class | IoU | iIoU |
---|---|---|
road | 98.4404 | - |
sidewalk | 85.0725 | - |
building | 92.3015 | - |
wall | 48.4282 | - |
fence | 55.3905 | - |
pole | 65.0352 | - |
traffic light | 73.975 | - |
traffic sign | 76.1325 | - |
vegetation | 93.2731 | - |
terrain | 71.232 | - |
sky | 94.9386 | - |
person | 85.3081 | 68.4646 |
rider | 67.295 | 45.6909 |
car | 95.4474 | 89.3784 |
truck | 57.8666 | 30.7824 |
bus | 67.5854 | 49.1795 |
train | 58.8216 | 41.4946 |
motorcycle | 61.3478 | 40.6074 |
bicycle | 74.4195 | 62.3303 |
Category results
Category | IoU | iIoU |
---|---|---|
flat | 98.6433 | - |
nature | 92.9725 | - |
object | 71.2619 | - |
sky | 94.9386 | - |
construction | 92.7825 | - |
human | 85.792 | 69.8502 |
vehicle | 94.8376 | 87.4721 |