Method Details
Details for method 'NVSegNet'
Method overview
name | NVSegNet |
challenge | pixel-level semantic labeling |
details | In the inference, we use the image of 2 different scales. The same for training! |
publication | Anonymous |
project page / code | |
used Cityscapes data | fine annotations |
used external data | ImageNet |
runtime | 0.4 s 2 GPU (1 titan and 1 quadro) |
subsampling | no |
submission date | May, 2016 |
previous submissions | 1, 2 |
Average results
Metric | Value |
---|---|
IoU Classes | 67.4338 |
iIoU Classes | 41.3607 |
IoU Categories | 87.2378 |
iIoU Categories | 68.0985 |
Class results
Class | IoU | iIoU |
---|---|---|
road | 97.9908 | - |
sidewalk | 81.8509 | - |
building | 90.1094 | - |
wall | 35.682 | - |
fence | 39.8044 | - |
pole | 57.4041 | - |
traffic light | 60.6322 | - |
traffic sign | 69.2825 | - |
vegetation | 91.7433 | - |
terrain | 67.6186 | - |
sky | 94.5529 | - |
person | 79.2562 | 51.864 |
rider | 54.4874 | 33.2894 |
car | 93.5097 | 84.9556 |
truck | 43.7789 | 25.5545 |
bus | 52.4167 | 34.54 |
train | 50.3039 | 25.3112 |
motorcycle | 52.9967 | 27.7776 |
bicycle | 67.8209 | 47.5933 |
Category results
Category | IoU | iIoU |
---|---|---|
flat | 98.3876 | - |
nature | 91.5879 | - |
object | 63.5407 | - |
sky | 94.5529 | - |
construction | 90.4621 | - |
human | 80.1654 | 53.5429 |
vehicle | 91.9678 | 82.6541 |