Method Details


Details for method 'NVSegNet'

 

Method overview

name NVSegNet
challenge pixel-level semantic labeling
details In the inference, we use the image of 2 different scales. The same for training!
publication Anonymous
project page / code
used Cityscapes data fine annotations
used external data ImageNet
runtime 0.4 s
2 GPU (1 titan and 1 quadro)
subsampling no
submission date May, 2016
previous submissions 1, 2

 

Average results

Metric Value
IoU Classes 67.4338
iIoU Classes 41.3607
IoU Categories 87.2378
iIoU Categories 68.0985

 

Class results

Class IoU iIoU
road 97.9908 -
sidewalk 81.8509 -
building 90.1094 -
wall 35.682 -
fence 39.8044 -
pole 57.4041 -
traffic light 60.6322 -
traffic sign 69.2825 -
vegetation 91.7433 -
terrain 67.6186 -
sky 94.5529 -
person 79.2562 51.864
rider 54.4874 33.2894
car 93.5097 84.9556
truck 43.7789 25.5545
bus 52.4167 34.54
train 50.3039 25.3112
motorcycle 52.9967 27.7776
bicycle 67.8209 47.5933

 

Category results

Category IoU iIoU
flat 98.3876 -
nature 91.5879 -
object 63.5407 -
sky 94.5529 -
construction 90.4621 -
human 80.1654 53.5429
vehicle 91.9678 82.6541

 

Links

Download results as .csv file

Benchmark page