Method Details
Details for method 'NVSegNet'
Method overview
name | NVSegNet |
challenge | pixel-level semantic labeling |
details | train on downsampled images (2x on each side), training takes 20 hours. The model in evaluation only trained on GTfine train |
publication | Anonymous |
project page / code | |
used Cityscapes data | fine annotations |
used external data | ImageNet |
runtime | 0.43 s 1 Nvidia Titan X, Intel i7 |
subsampling | 2 |
submission date | April, 2016 |
previous submissions |
Average results
Metric | Value |
---|---|
IoU Classes | 63.4053 |
iIoU Classes | 35.5009 |
IoU Categories | 84.7057 |
iIoU Categories | 64.2389 |
Class results
Class | IoU | iIoU |
---|---|---|
road | 97.4402 | - |
sidewalk | 77.5417 | - |
building | 88.6301 | - |
wall | 38.3513 | - |
fence | 33.5123 | - |
pole | 50.6061 | - |
traffic light | 52.5005 | - |
traffic sign | 60.7586 | - |
vegetation | 90.4138 | - |
terrain | 66.8702 | - |
sky | 93.7976 | - |
person | 74.2953 | 46.1374 |
rider | 51.2657 | 24.5849 |
car | 91.8306 | 83.219 |
truck | 37.5805 | 19.3021 |
bus | 46.5186 | 27.2532 |
train | 44.3251 | 22.7302 |
motorcycle | 46.818 | 20.0501 |
bicycle | 61.6453 | 40.7304 |
Category results
Category | IoU | iIoU |
---|---|---|
flat | 98.0555 | - |
nature | 90.0296 | - |
object | 57.1359 | - |
sky | 93.7976 | - |
construction | 88.5185 | - |
human | 74.9589 | 47.2582 |
vehicle | 90.4436 | 81.2196 |