Method Details


Details for method 'Pixel-level Encoding for Instance Segmentation'

 

Method overview

name Pixel-level Encoding for Instance Segmentation
challenge instance-level semantic labeling
details We predict three encoding channels from a single image using an FCN: semantic labels, depth classes, and an instance-aware representation based on directions towards instance centers. Using low-level computer vision techniques, we obtain pixel-level and instance-level semantic labeling paired with a depth estimate of the instances.
publication Pixel-level Encoding and Depth Layering for Instance-level Semantic Labeling
J. Uhrig, M. Cordts, U. Franke, and T. Brox
GCPR 2016
http://arxiv.org/abs/1604.05096
project page / code
used Cityscapes data fine annotations, stereo
used external data ImageNet
runtime n/a
subsampling no
submission date April, 2016
previous submissions

 

Average results

Metric Value
AP 8.89385
AP50% 21.1405
AP100m 15.2578
AP50m 16.7142

 

Class results

Class AP AP50% AP100m AP50m
person 12.5394 31.8091 24.383 24.9723
rider 11.6934 33.8132 20.2862 20.96
car 22.4908 37.8369 36.4126 40.7182
truck 3.25894 7.56638 5.52384 6.72277
bus 5.86555 11.9891 10.5666 13.4667
train 3.22664 8.48319 5.17961 6.38073
motorcycle 6.92793 20.4522 10.5089 11.1971
bicycle 5.14812 17.1742 9.2017 9.29596

 

Links

Download results as .csv file

Benchmark page