Method Details


Details for method 'ESANet RGB'

 

Method overview

name ESANet RGB
challenge pixel-level semantic labeling
details ESANet: Efficient RGB-D Semantic Segmentation for Indoor Scene Analysis. ESANet-R34-NBt1D using RGB images only.
publication Efficient RGB-D Semantic Segmentation for Indoor Scene Analysis
Daniel Seichter, Mona Köhler, Benjamin Lewandowski, Tim Wengefeld and Horst-Michael Gross
project page / code https://github.com/TUI-NICR/ESANet
used Cityscapes data fine annotations
used external data ImageNet
runtime 0.1205 s
NVIDIA Jetson AGX Xavier (Jetpack 4.4, TensorRT 7.1, Float16)
subsampling no
submission date November, 2020
previous submissions

 

Average results

Metric Value
IoU Classes 77.5574
iIoU Classes 53.1298
IoU Categories 90.1509
iIoU Categories 76.1974

 

Class results

Class IoU iIoU
road 98.4413 -
sidewalk 84.9052 -
building 92.713 -
wall 55.3943 -
fence 58.9471 -
pole 64.6633 -
traffic light 71.7233 -
traffic sign 75.7924 -
vegetation 93.3104 -
terrain 70.956 -
sky 95.2586 -
person 84.8994 64.1194
rider 67.6772 43.5926
car 95.7449 89.0103
truck 64.6938 34.1028
bus 79.1171 46.6804
train 80.9395 45.8106
motorcycle 64.4847 42.9047
bicycle 73.9294 58.8176

 

Category results

Category IoU iIoU
flat 98.6452 -
nature 92.9936 -
object 70.9705 -
sky 95.2586 -
construction 93.0572 -
human 85.1016 65.4723
vehicle 95.0295 86.9225

 

Links

Download results as .csv file

Benchmark page