Method Details
Details for method 'ESANet RGB'
Method overview
name | ESANet RGB |
challenge | pixel-level semantic labeling |
details | ESANet: Efficient RGB-D Semantic Segmentation for Indoor Scene Analysis. ESANet-R34-NBt1D using RGB images only. |
publication | Efficient RGB-D Semantic Segmentation for Indoor Scene Analysis Daniel Seichter, Mona Köhler, Benjamin Lewandowski, Tim Wengefeld and Horst-Michael Gross |
project page / code | https://github.com/TUI-NICR/ESANet |
used Cityscapes data | fine annotations |
used external data | ImageNet |
runtime | 0.1205 s NVIDIA Jetson AGX Xavier (Jetpack 4.4, TensorRT 7.1, Float16) |
subsampling | no |
submission date | November, 2020 |
previous submissions |
Average results
Metric | Value |
---|---|
IoU Classes | 77.5574 |
iIoU Classes | 53.1298 |
IoU Categories | 90.1509 |
iIoU Categories | 76.1974 |
Class results
Class | IoU | iIoU |
---|---|---|
road | 98.4413 | - |
sidewalk | 84.9052 | - |
building | 92.713 | - |
wall | 55.3943 | - |
fence | 58.9471 | - |
pole | 64.6633 | - |
traffic light | 71.7233 | - |
traffic sign | 75.7924 | - |
vegetation | 93.3104 | - |
terrain | 70.956 | - |
sky | 95.2586 | - |
person | 84.8994 | 64.1194 |
rider | 67.6772 | 43.5926 |
car | 95.7449 | 89.0103 |
truck | 64.6938 | 34.1028 |
bus | 79.1171 | 46.6804 |
train | 80.9395 | 45.8106 |
motorcycle | 64.4847 | 42.9047 |
bicycle | 73.9294 | 58.8176 |
Category results
Category | IoU | iIoU |
---|---|---|
flat | 98.6452 | - |
nature | 92.9936 | - |
object | 70.9705 | - |
sky | 95.2586 | - |
construction | 93.0572 | - |
human | 85.1016 | 65.4723 |
vehicle | 95.0295 | 86.9225 |