Method Details


Details for method 'ESANet RGB-D'

 

Method overview

name ESANet RGB-D
challenge pixel-level semantic labeling
details Efficient RGB-D Semantic Segmentation for Indoor Scene Analysis. ESANet-R34-NBt1D using RGB-D data.
publication Efficient RGB-D Semantic Segmentation for Indoor Scene Analysis
Daniel Seichter, Mona Köhler, Benjamin Lewandowski, Tim Wengefeld and Horst-Michael Gross
project page / code https://github.com/TUI-NICR/ESANet
used Cityscapes data fine annotations, stereo
used external data ImageNet
runtime 0.1613 s
NVIDIA Jetson AGX Xavier (Jetpack 4.4, TensorRT 7.1, Float16)
subsampling no
submission date November, 2020
previous submissions

 

Average results

Metric Value
IoU Classes 78.4156
iIoU Classes 56.4287
IoU Categories 91.3277
iIoU Categories 78.9692

 

Class results

Class IoU iIoU
road 98.6801 -
sidewalk 87.1258 -
building 93.3235 -
wall 49.8248 -
fence 60.1854 -
pole 69.0855 -
traffic light 76.0786 -
traffic sign 79.4331 -
vegetation 93.5753 -
terrain 72.6651 -
sky 95.8992 -
person 87.2127 68.3665
rider 71.2892 48.7278
car 96.0807 90.7017
truck 66.2357 36.9913
bus 78.4268 49.8291
train 71.5065 48.718
motorcycle 67.102 46.2371
bicycle 76.1663 61.8579

 

Category results

Category IoU iIoU
flat 98.7184 -
nature 93.3121 -
object 75.0653 -
sky 95.8992 -
construction 93.7242 -
human 87.1026 69.2849
vehicle 95.4722 88.6535

 

Links

Download results as .csv file

Benchmark page