Method Details
Details for method 'ESANet RGB-D'
Method overview
name | ESANet RGB-D |
challenge | pixel-level semantic labeling |
details | Efficient RGB-D Semantic Segmentation for Indoor Scene Analysis. ESANet-R34-NBt1D using RGB-D data. |
publication | Efficient RGB-D Semantic Segmentation for Indoor Scene Analysis Daniel Seichter, Mona Köhler, Benjamin Lewandowski, Tim Wengefeld and Horst-Michael Gross |
project page / code | https://github.com/TUI-NICR/ESANet |
used Cityscapes data | fine annotations, stereo |
used external data | ImageNet |
runtime | 0.1613 s NVIDIA Jetson AGX Xavier (Jetpack 4.4, TensorRT 7.1, Float16) |
subsampling | no |
submission date | November, 2020 |
previous submissions |
Average results
Metric | Value |
---|---|
IoU Classes | 78.4156 |
iIoU Classes | 56.4287 |
IoU Categories | 91.3277 |
iIoU Categories | 78.9692 |
Class results
Class | IoU | iIoU |
---|---|---|
road | 98.6801 | - |
sidewalk | 87.1258 | - |
building | 93.3235 | - |
wall | 49.8248 | - |
fence | 60.1854 | - |
pole | 69.0855 | - |
traffic light | 76.0786 | - |
traffic sign | 79.4331 | - |
vegetation | 93.5753 | - |
terrain | 72.6651 | - |
sky | 95.8992 | - |
person | 87.2127 | 68.3665 |
rider | 71.2892 | 48.7278 |
car | 96.0807 | 90.7017 |
truck | 66.2357 | 36.9913 |
bus | 78.4268 | 49.8291 |
train | 71.5065 | 48.718 |
motorcycle | 67.102 | 46.2371 |
bicycle | 76.1663 | 61.8579 |
Category results
Category | IoU | iIoU |
---|---|---|
flat | 98.7184 | - |
nature | 93.3121 | - |
object | 75.0653 | - |
sky | 95.8992 | - |
construction | 93.7242 | - |
human | 87.1026 | 69.2849 |
vehicle | 95.4722 | 88.6535 |