Method Details
Details for method 'ESANet RGB (small input)'
Method overview
name | ESANet RGB (small input) |
challenge | pixel-level semantic labeling |
details | ESANet: Efficient RGB-D Semantic Segmentation for Indoor Scene Analysis. ESANet-R34-NBt1D using RGB images with half the input resolution. |
publication | Efficient RGB-D Semantic Segmentation for Indoor Scene Analysis Daniel Seichter, Mona Köhler, Benjamin Lewandowski, Tim Wengefeld and Horst-Michael Gross |
project page / code | https://github.com/TUI-NICR/ESANet |
used Cityscapes data | fine annotations |
used external data | ImageNet |
runtime | 0.031 s NVIDIA Jetson AGX Xavier (Jetpack 4.4, TensorRT 7.1, Float16) |
subsampling | 2 |
submission date | October, 2020 |
previous submissions |
Average results
Metric | Value |
---|---|
IoU Classes | 72.8739 |
iIoU Classes | 40.5152 |
IoU Categories | 87.0524 |
iIoU Categories | 66.5409 |
Class results
Class | IoU | iIoU |
---|---|---|
road | 98.2446 | - |
sidewalk | 84.0601 | - |
building | 91.1737 | - |
wall | 57.1172 | - |
fence | 52.56 | - |
pole | 55.7002 | - |
traffic light | 61.295 | - |
traffic sign | 66.8496 | - |
vegetation | 91.5616 | - |
terrain | 69.6212 | - |
sky | 94.5555 | - |
person | 79.2713 | 49.6399 |
rider | 62.754 | 30.9949 |
car | 93.8732 | 85.6427 |
truck | 64.9196 | 23.27 |
bus | 71.6032 | 33.305 |
train | 64.8048 | 32.9657 |
motorcycle | 56.9792 | 25.7532 |
bicycle | 67.6592 | 42.55 |
Category results
Category | IoU | iIoU |
---|---|---|
flat | 98.2522 | - |
nature | 91.2202 | - |
object | 61.5863 | - |
sky | 94.5555 | - |
construction | 91.3102 | - |
human | 79.2822 | 50.5049 |
vehicle | 93.16 | 82.5768 |