Method Details


Details for method 'ESANet RGB (small input)'

 

Method overview

name ESANet RGB (small input)
challenge pixel-level semantic labeling
details ESANet: Efficient RGB-D Semantic Segmentation for Indoor Scene Analysis. ESANet-R34-NBt1D using RGB images with half the input resolution.
publication Efficient RGB-D Semantic Segmentation for Indoor Scene Analysis
Daniel Seichter, Mona Köhler, Benjamin Lewandowski, Tim Wengefeld and Horst-Michael Gross
project page / code https://github.com/TUI-NICR/ESANet
used Cityscapes data fine annotations
used external data ImageNet
runtime 0.031 s
NVIDIA Jetson AGX Xavier (Jetpack 4.4, TensorRT 7.1, Float16)
subsampling 2
submission date October, 2020
previous submissions

 

Average results

Metric Value
IoU Classes 72.8739
iIoU Classes 40.5152
IoU Categories 87.0524
iIoU Categories 66.5409

 

Class results

Class IoU iIoU
road 98.2446 -
sidewalk 84.0601 -
building 91.1737 -
wall 57.1172 -
fence 52.56 -
pole 55.7002 -
traffic light 61.295 -
traffic sign 66.8496 -
vegetation 91.5616 -
terrain 69.6212 -
sky 94.5555 -
person 79.2713 49.6399
rider 62.754 30.9949
car 93.8732 85.6427
truck 64.9196 23.27
bus 71.6032 33.305
train 64.8048 32.9657
motorcycle 56.9792 25.7532
bicycle 67.6592 42.55

 

Category results

Category IoU iIoU
flat 98.2522 -
nature 91.2202 -
object 61.5863 -
sky 94.5555 -
construction 91.3102 -
human 79.2822 50.5049
vehicle 93.16 82.5768

 

Links

Download results as .csv file

Benchmark page