Method Details


Details for method 'ESANet RGB-D (small input)'

 

Method overview

name ESANet RGB-D (small input)
challenge pixel-level semantic labeling
details Efficient RGB-D Semantic Segmentation for Indoor Scene Analysis. ESANet-R34-NBt1D using RGB-D data with half the input resolution.
publication Efficient RGB-D Semantic Segmentation for Indoor Scene Analysis
Daniel Seichter, Mona Köhler, Benjamin Lewandowski, Tim Wengefeld and Horst-Michael Gross
project page / code https://github.com/TUI-NICR/ESANet
used Cityscapes data fine annotations, stereo
used external data
runtime 0.0427 s
NVIDIA Jetson AGX Xavier (Jetpack 4.4, TensorRT 7.1, Float16)
subsampling 2
submission date October, 2020
previous submissions

 

Average results

Metric Value
IoU Classes 75.646
iIoU Classes 44.908
IoU Categories 88.9559
iIoU Categories 70.6886

 

Class results

Class IoU iIoU
road 98.4995 -
sidewalk 85.9197 -
building 92.3479 -
wall 54.0931 -
fence 55.4349 -
pole 61.6331 -
traffic light 67.9727 -
traffic sign 72.8438 -
vegetation 92.3085 -
terrain 71.3468 -
sky 95.1956 -
person 82.4766 56.059
rider 65.8011 35.4149
car 94.8204 87.424
truck 64.0218 22.96
bus 79.9297 38.1479
train 72.3218 39.5896
motorcycle 60.4894 32.0618
bicycle 69.8169 47.607

 

Category results

Category IoU iIoU
flat 98.4663 -
nature 92.0047 -
object 67.9954 -
sky 95.1956 -
construction 92.3724 -
human 82.43 56.7565
vehicle 94.2269 84.6208

 

Links

Download results as .csv file

Benchmark page