Method Details
Details for method 'ResNeSt200'
Method overview
name | ResNeSt200 |
challenge | pixel-level semantic labeling |
details | DeepLabV3+ network with ResNeSt200 backbone. |
publication | ResNeSt: Split-Attention Networks Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Mueller, R. Manmatha, Mu Li, and Alexander Smola https://arxiv.org/abs/2004.08955 |
project page / code | |
used Cityscapes data | fine annotations |
used external data | ImageNet, Mapillary |
runtime | n/a |
subsampling | no |
submission date | May, 2020 |
previous submissions |
Average results
Metric | Value |
---|---|
IoU Classes | 83.2611 |
iIoU Classes | 63.0098 |
IoU Categories | 92.3056 |
iIoU Categories | 81.2647 |
Class results
Class | IoU | iIoU |
---|---|---|
road | 98.8882 | - |
sidewalk | 88.4154 | - |
building | 94.3537 | - |
wall | 65.9747 | - |
fence | 66.0136 | - |
pole | 72.543 | - |
traffic light | 78.5787 | - |
traffic sign | 82.4758 | - |
vegetation | 94.1842 | - |
terrain | 72.864 | - |
sky | 96.2613 | - |
person | 88.4383 | 71.9145 |
rider | 74.8105 | 53.7176 |
car | 96.5826 | 91.7784 |
truck | 77.0118 | 47.1849 |
bus | 92.3494 | 63.4171 |
train | 89.9938 | 58.8968 |
motorcycle | 73.1583 | 52.1416 |
bicycle | 79.0634 | 65.0273 |
Category results
Category | IoU | iIoU |
---|---|---|
flat | 98.8009 | - |
nature | 93.8627 | - |
object | 77.8493 | - |
sky | 96.2613 | - |
construction | 94.5723 | - |
human | 88.5479 | 72.6212 |
vehicle | 96.2446 | 89.9083 |