Method Details


Details for method 'R-CNN + MCG convex hull'

 

Method overview

name R-CNN + MCG convex hull
challenge instance-level semantic labeling
details We compute MCG object proposals [1] and use their convex hulls as instance candidates. These proposals are scored by a Fast R-CNN detector [2]. [1] P. Arbelaez, J. Pont-Tuset, J. Barron, F. Marqués, and J. Malik. Multiscale combinatorial grouping. In CVPR, 2014. [2] R. Girshick. Fast R-CNN. In ICCV, 2015.
publication The Cityscapes Dataset for Semantic Urban Scene Understanding
M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, B. Schiele
CVPR 2016
https://www.cityscapes-dataset.com/wordpress/wp-content/papercite-data/pdf/cordts2016cityscapes.pdf
project page / code
used Cityscapes data fine annotations
used external data ImageNet
runtime 60 s
subsampling 2
submission date April, 2016
previous submissions

 

Average results

Metric Value
AP 4.55117
AP50% 12.9045
AP100m 7.72122
AP50m 10.2591

 

Class results

Class AP AP50% AP100m AP50m
person 1.31034 5.60813 2.57423 2.7342
rider 0.60637 3.91998 1.06862 1.08409
car 10.5089 26.0016 17.4514 21.1824
truck 6.14297 13.8018 10.6379 13.9857
bus 9.69777 26.3358 17.353 25.2147
train 5.85429 15.8461 9.15934 14.1514
motorcycle 1.7459 8.63505 2.59719 2.73806
bicycle 0.542845 3.0876 0.92805 0.982185

 

Links

Download results as .csv file

Benchmark page