Method Details


Details for method 'LGE A&B Center: HANet (ResNext-101)'

 

Method overview

name LGE A&B Center: HANet (ResNext-101)
challenge pixel-level semantic labeling
details Dataset: "fine train + fine val + coarse", Backbone: Mapillary pretrained ResNext-101
publication Cars Can’t Fly up in the Sky: Improving Urban-Scene Segmentation via Height-driven Attention Networks
Sungha Choi (LGE, Korea Univ.), Joanne T. Kim (Korea Univ.), Jaegul Choo (KAIST)
CVPR 2020
https://arxiv.org/abs/2003.05128
project page / code https://github.com/shachoi/HANet
used Cityscapes data fine annotations, coarse annotations
used external data ImageNet, Mapillary
runtime n/a
subsampling no
submission date March, 2020
previous submissions

 

Average results

Metric Value
IoU Classes 83.1703
iIoU Classes 62.625
IoU Categories 92.067
iIoU Categories 80.662

 

Class results

Class IoU iIoU
road 98.8312 -
sidewalk 87.9859 -
building 94.1956 -
wall 66.5642 -
fence 64.814 -
pole 72.0216 -
traffic light 78.1983 -
traffic sign 81.4281 -
vegetation 94.1574 -
terrain 74.4767 -
sky 96.0846 -
person 88.0757 70.6074
rider 75.6363 55.1073
car 96.5138 91.7535
truck 80.3446 47.7202
bus 93.1892 61.1293
train 86.5642 56.1707
motorcycle 72.4761 53.1504
bicycle 78.678 65.3613

 

Category results

Category IoU iIoU
flat 98.8044 -
nature 93.8363 -
object 77.3083 -
sky 96.0846 -
construction 94.3179 -
human 87.9974 71.4354
vehicle 96.1202 89.8887

 

Links

Download results as .csv file

Benchmark page