Method Details


Details for method 'GAIS-Net'

 

Method overview

name GAIS-Net
challenge instance-level semantic labeling
details Geometry-Aware Instance Segmentation with Disparity Maps
publication Geometry-Aware Instance Segmentation with Disparity Maps
Cho-Ying Wu, Xiaoyan Hu, Michael Happold, Qiangeng Xu, Ulrich Neumann
Scalability in Autonomous Driving, workshop at CVPR 2020
https://arxiv.org/abs/2006.07802
project page / code https://github.com/choyingw/GAIS-Net
used Cityscapes data fine annotations, stereo
used external data ImageNet, COCO
runtime n/a
subsampling no
submission date March, 2020
previous submissions

 

Average results

Metric Value
AP 32.262
AP50% 59.4847
AP100m 44.5528
AP50m 46.6115

 

Class results

Class AP AP50% AP100m AP50m
person 36.0351 68.7388 51.8498 51.9337
rider 29.0225 66.8026 41.3054 41.9439
car 52.8019 77.9875 71.2109 73.4234
truck 29.6941 42.6566 39.9653 45.3519
bus 39.7577 59.0655 54.9122 58.3544
train 28.9372 56.0547 41.4944 45.7776
motorcycle 23.2985 54.9956 29.4237 29.8348
bicycle 18.5487 49.5764 26.2604 26.2723

 

Links

Download results as .csv file

Benchmark page