Method Details
Details for method 'CRFasRNN'
Method overview
name | CRFasRNN |
challenge | pixel-level semantic labeling |
details | Trained on a pre-release version of the dataset |
publication | Conditional Random Fields as Recurrent Neural Networks S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. H. S. Torr ICCV 2015 http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Conditional_Random_Fields_ICCV_2015_paper.pdf |
project page / code | https://github.com/torrvision/crfasrnn |
used Cityscapes data | fine annotations |
used external data | ImageNet |
runtime | 0.7 s CPU: Intel(R) Core(TM) i7-4960X CPU @ 3.60GHz; GPU: Nvidia Titan X. |
subsampling | 2 |
submission date | April, 2016 |
previous submissions |
Average results
Metric | Value |
---|---|
IoU Classes | 62.5045 |
iIoU Classes | 34.4016 |
IoU Categories | 82.7118 |
iIoU Categories | 65.9932 |
Class results
Class | IoU | iIoU |
---|---|---|
road | 96.283 | - |
sidewalk | 73.8971 | - |
building | 88.1694 | - |
wall | 47.559 | - |
fence | 41.2829 | - |
pole | 35.1842 | - |
traffic light | 49.4617 | - |
traffic sign | 59.7282 | - |
vegetation | 90.5596 | - |
terrain | 66.0933 | - |
sky | 93.4858 | - |
person | 70.4387 | 50.6476 |
rider | 34.6683 | 17.8203 |
car | 90.0879 | 81.1248 |
truck | 39.206 | 18.0111 |
bus | 57.4719 | 24.9736 |
train | 55.4277 | 30.2625 |
motorcycle | 43.9473 | 22.3164 |
bicycle | 54.6337 | 30.0565 |
Category results
Category | IoU | iIoU |
---|---|---|
flat | 97.7104 | - |
nature | 90.293 | - |
object | 46.5066 | - |
sky | 93.4858 | - |
construction | 88.4782 | - |
human | 73.5613 | 53.4027 |
vehicle | 88.947 | 78.5837 |