Method Details


Details for method 'CRFasRNN'

 

Method overview

name CRFasRNN
challenge pixel-level semantic labeling
details Trained on a pre-release version of the dataset
publication Conditional Random Fields as Recurrent Neural Networks
S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. H. S. Torr
ICCV 2015
http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Conditional_Random_Fields_ICCV_2015_paper.pdf
project page / code https://github.com/torrvision/crfasrnn
used Cityscapes data fine annotations
used external data ImageNet
runtime 0.7 s
CPU: Intel(R) Core(TM) i7-4960X CPU @ 3.60GHz; GPU: Nvidia Titan X.
subsampling 2
submission date April, 2016
previous submissions

 

Average results

Metric Value
IoU Classes 62.5045
iIoU Classes 34.4016
IoU Categories 82.7118
iIoU Categories 65.9932

 

Class results

Class IoU iIoU
road 96.283 -
sidewalk 73.8971 -
building 88.1694 -
wall 47.559 -
fence 41.2829 -
pole 35.1842 -
traffic light 49.4617 -
traffic sign 59.7282 -
vegetation 90.5596 -
terrain 66.0933 -
sky 93.4858 -
person 70.4387 50.6476
rider 34.6683 17.8203
car 90.0879 81.1248
truck 39.206 18.0111
bus 57.4719 24.9736
train 55.4277 30.2625
motorcycle 43.9473 22.3164
bicycle 54.6337 30.0565

 

Category results

Category IoU iIoU
flat 97.7104 -
nature 90.293 -
object 46.5066 -
sky 93.4858 -
construction 88.4782 -
human 73.5613 53.4027
vehicle 88.947 78.5837

 

Links

Download results as .csv file

Benchmark page