Method Details


Details for method 'Segnet extended'

 

Method overview

name Segnet extended
challenge pixel-level semantic labeling
details Trained on a pre-release version of the dataset
publication SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
V. Badrinarayanan, A. Kendall, and R. Cipolla
arXiv preprint 2015
http://arxiv.org/pdf/1511.00561v2
project page / code https://github.com/alexgkendall/caffe-segnet
used Cityscapes data fine annotations
used external data ImageNet
runtime 0.06 s
subsampling 4
submission date April, 2016
previous submissions

 

Average results

Metric Value
IoU Classes 56.0937
iIoU Classes 34.2066
IoU Categories 79.8263
iIoU Categories 66.4144

 

Class results

Class IoU iIoU
road 95.6463 -
sidewalk 70.1007 -
building 82.8084 -
wall 29.8726 -
fence 31.8846 -
pole 38.062 -
traffic light 43.0533 -
traffic sign 44.5793 -
vegetation 87.3227 -
terrain 62.2987 -
sky 91.6764 -
person 67.2757 49.8798
rider 50.747 27.1253
car 87.8922 81.1109
truck 21.6999 15.2726
bus 29.0288 23.7064
train 34.7275 18.5378
motorcycle 40.4738 19.6388
bicycle 56.6309 38.3812

 

Category results

Category IoU iIoU
flat 97.4631 -
nature 87.1357 -
object 43.661 -
sky 91.6764 -
construction 82.753 -
human 68.6355 51.8936
vehicle 87.4595 80.9352

 

Links

Download results as .csv file

Benchmark page