Method Details


Details for method 'Segnet basic'

 

Method overview

name Segnet basic
challenge pixel-level semantic labeling
details Trained on a pre-release version of the dataset
publication SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
V. Badrinarayanan, A. Kendall, and R. Cipolla
arXiv preprint 2015
http://arxiv.org/pdf/1511.00561v2
project page / code https://github.com/alexgkendall/caffe-segnet
used Cityscapes data fine annotations
used external data ImageNet
runtime 0.06 s
subsampling 4
submission date April, 2016
previous submissions

 

Average results

Metric Value
IoU Classes 56.9587
iIoU Classes 31.9834
IoU Categories 79.1333
iIoU Categories 61.9014

 

Class results

Class IoU iIoU
road 96.4035 -
sidewalk 73.2057 -
building 83.9933 -
wall 28.453 -
fence 29.0315 -
pole 35.7008 -
traffic light 39.7643 -
traffic sign 45.1568 -
vegetation 87.017 -
terrain 63.8135 -
sky 91.7628 -
person 62.7811 44.3207
rider 42.8068 22.739
car 89.2729 78.3561
truck 38.1286 16.1161
bus 43.1184 24.2727
train 44.1504 20.6503
motorcycle 35.7857 15.8372
bicycle 51.8698 33.5749

 

Category results

Category IoU iIoU
flat 97.4114 -
nature 86.6803 -
object 42.4578 -
sky 91.7628 -
construction 83.7608 -
human 64.6647 46.9724
vehicle 87.1951 76.8303

 

Links

Download results as .csv file

Benchmark page