Method Details


Details for method 'DeepLab LargeFOV StrongWeak'

 

Method overview

name DeepLab LargeFOV StrongWeak
challenge pixel-level semantic labeling
details Trained on a pre-release version of the dataset
publication Weakly- and Semi-Supervised Learning of a DCNN for Semantic Image Segmentation
G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille
ICCV 2015
http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Papandreou_Weakly-_and_Semi-Supervised_ICCV_2015_paper.pdf
project page / code https://bitbucket.org/deeplab/deeplab-public/
used Cityscapes data fine annotations, coarse annotations
used external data ImageNet
runtime 4 s
subsampling 2
submission date April, 2016
previous submissions

 

Average results

Metric Value
IoU Classes 64.7945
iIoU Classes 34.9024
IoU Categories 81.2912
iIoU Categories 58.6522

 

Class results

Class IoU iIoU
road 97.3509 -
sidewalk 78.2755 -
building 88.0623 -
wall 47.4569 -
fence 44.1554 -
pole 29.4742 -
traffic light 44.3612 -
traffic sign 55.4453 -
vegetation 89.3685 -
terrain 67.3123 -
sky 92.8087 -
person 71.0044 40.6891
rider 49.2612 23.0572
car 91.4369 78.6038
truck 55.9035 21.397
bus 66.5594 32.3992
train 56.6897 27.5993
motorcycle 48.0682 20.8278
bicycle 58.1014 34.6458

 

Category results

Category IoU iIoU
flat 97.7611 -
nature 89.0106 -
object 40.448 -
sky 92.8087 -
construction 88.187 -
human 70.87 41.4042
vehicle 89.9533 75.9002

 

Links

Download results as .csv file

Benchmark page