Method Details


Details for method 'Adelaide'

 

Method overview

name Adelaide
challenge pixel-level semantic labeling
details Trained on a pre-release version of the dataset
publication Efficient Piecewise Training of Deep Structured Models for Semantic Segmentation
G. Lin, C. Shen, I. Reid, and A. van den Hengel
arXiv preprint 2015
http://arxiv.org/pdf/1504.01013v2
project page / code
used Cityscapes data fine annotations
used external data ImageNet
runtime 35 s
subsampling no
submission date April, 2016
previous submissions

 

Average results

Metric Value
IoU Classes 66.399
iIoU Classes 46.7273
IoU Categories 82.7603
iIoU Categories 67.4338

 

Class results

Class IoU iIoU
road 97.2711 -
sidewalk 78.5006 -
building 88.3844 -
wall 44.4675 -
fence 48.2643 -
pole 34.096 -
traffic light 55.4515 -
traffic sign 61.6525 -
vegetation 90.0663 -
terrain 69.503 -
sky 92.2424 -
person 72.4868 56.2414
rider 52.283 38.0152
car 90.9574 77.1012
truck 54.6381 34.0072
bus 61.6087 47.0492
train 51.5948 33.4023
motorcycle 55.0289 38.1337
bicycle 63.0828 49.8688

 

Category results

Category IoU iIoU
flat 97.8021 -
nature 89.7339 -
object 48.1585 -
sky 92.2424 -
construction 88.6563 -
human 73.1264 58.2034
vehicle 89.6025 76.6643

 

Links

Download results as .csv file

Benchmark page