Method Details
Details for method 'Adelaide'
Method overview
name | Adelaide |
challenge | pixel-level semantic labeling |
details | Trained on a pre-release version of the dataset |
publication | Efficient Piecewise Training of Deep Structured Models for Semantic Segmentation G. Lin, C. Shen, I. Reid, and A. van den Hengel arXiv preprint 2015 http://arxiv.org/pdf/1504.01013v2 |
project page / code | |
used Cityscapes data | fine annotations |
used external data | ImageNet |
runtime | 35 s |
subsampling | no |
submission date | April, 2016 |
previous submissions |
Average results
Metric | Value |
---|---|
IoU Classes | 66.399 |
iIoU Classes | 46.7273 |
IoU Categories | 82.7603 |
iIoU Categories | 67.4338 |
Class results
Class | IoU | iIoU |
---|---|---|
road | 97.2711 | - |
sidewalk | 78.5006 | - |
building | 88.3844 | - |
wall | 44.4675 | - |
fence | 48.2643 | - |
pole | 34.096 | - |
traffic light | 55.4515 | - |
traffic sign | 61.6525 | - |
vegetation | 90.0663 | - |
terrain | 69.503 | - |
sky | 92.2424 | - |
person | 72.4868 | 56.2414 |
rider | 52.283 | 38.0152 |
car | 90.9574 | 77.1012 |
truck | 54.6381 | 34.0072 |
bus | 61.6087 | 47.0492 |
train | 51.5948 | 33.4023 |
motorcycle | 55.0289 | 38.1337 |
bicycle | 63.0828 | 49.8688 |
Category results
Category | IoU | iIoU |
---|---|---|
flat | 97.8021 | - |
nature | 89.7339 | - |
object | 48.1585 | - |
sky | 92.2424 | - |
construction | 88.6563 | - |
human | 73.1264 | 58.2034 |
vehicle | 89.6025 | 76.6643 |