Method Details


Details for method 'F2MF-mid'

 

Method overview

name F2MF-mid
challenge pixel-level semantic labeling
details Our method forecasts semantic segmentation 9 timesteps into the future.
publication Warp to the Future: Joint Forecasting of Features and Feature Motion
Josip Saric, Marin Orsic, Tonci Antunovic, Sacha Vrazic, Sinisa Segvic
The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020
http://openaccess.thecvf.com/content_CVPR_2020/html/Saric_Warp_to_the_Future_Joint_Forecasting_of_Features_and_Feature_CVPR_2020_paper.html
project page / code https://jsaric.github.io/f2mf/
used Cityscapes data fine annotations, video
used external data ImageNet
runtime n/a
subsampling no
submission date November, 2019
previous submissions

 

Average results

Metric Value
IoU Classes 59.1418
iIoU Classes 32.9474
IoU Categories 72.3534
iIoU Categories 47.9723

 

Class results

Class IoU iIoU
road 95.1334 -
sidewalk 69.1831 -
building 83.4636 -
wall 47.1769 -
fence 43.8126 -
pole 22.9257 -
traffic light 41.8166 -
traffic sign 41.3293 -
vegetation 84.1868 -
terrain 58.5158 -
sky 85.9859 -
person 46.6717 31.7294
rider 33.9405 17.0744
car 80.2939 65.4901
truck 53.7925 24.1308
bus 72.4972 34.3202
train 79.0464 41.8439
motorcycle 39.6563 20.6434
bicycle 44.265 28.3474

 

Category results

Category IoU iIoU
flat 95.2601 -
nature 83.6841 -
object 32.3701 -
sky 85.9859 -
construction 83.417 -
human 46.3418 31.9641
vehicle 79.4149 63.9805

 

Links

Download results as .csv file

Benchmark page