Method Details
Details for method 'FC-HarDNet-70'
Method overview
name | FC-HarDNet-70 |
challenge | pixel-level semantic labeling |
details | Fully Convolutional Harmonic DenseNet 70 U-shape encoder-decoder structure with HarDNet blocks Trained with single scale loss at stride-4 validation mIoU=77.7 |
publication | HarDNet: A Low Memory Traffic Network Ping Chao, Chao-Yang Kao, Yu-Shan Ruan, Chien-Hsiang Huang, Youn-Long Lin ICCV 2019 https://arxiv.org/abs/1909.00948 |
project page / code | https://github.com/PingoLH/FCHarDNet |
used Cityscapes data | fine annotations |
used external data | ImageNet |
runtime | 0.015 s Titan V |
subsampling | no |
submission date | October, 2019 |
previous submissions |
Average results
Metric | Value |
---|---|
IoU Classes | 75.8585 |
iIoU Classes | 51.3705 |
IoU Categories | 89.9399 |
iIoU Categories | 76.6546 |
Class results
Class | IoU | iIoU |
---|---|---|
road | 98.5122 | - |
sidewalk | 85.4509 | - |
building | 92.5003 | - |
wall | 49.0418 | - |
fence | 54.4441 | - |
pole | 63.9704 | - |
traffic light | 71.5329 | - |
traffic sign | 75.6338 | - |
vegetation | 93.015 | - |
terrain | 70.5502 | - |
sky | 95.3597 | - |
person | 84.5298 | 65.0336 |
rider | 67.3695 | 43.0293 |
car | 95.6614 | 89.1567 |
truck | 67.7129 | 34.03 |
bus | 79.0054 | 45.1613 |
train | 63.6254 | 37.3528 |
motorcycle | 60.657 | 38.8138 |
bicycle | 72.7394 | 58.3867 |
Category results
Category | IoU | iIoU |
---|---|---|
flat | 98.6551 | - |
nature | 92.7812 | - |
object | 70.4994 | - |
sky | 95.3597 | - |
construction | 92.7134 | - |
human | 84.6337 | 66.3379 |
vehicle | 94.9367 | 86.9713 |