Method Details


Details for method 'Deep Watershed Transformation'

 

Method overview

name Deep Watershed Transformation
challenge instance-level semantic labeling
details Instance segmentation using a watershed transformation inspired CNN. The input RGB image is augmented using the semantic segmentation from the recent PSPNet by H. Zhao et al. Previously named "DWT".
publication Deep Watershed Transformation for Instance Segmentation
Min Bai and Raquel Urtasun
CVPR 2017
https://arxiv.org/abs/1611.08303
project page / code
used Cityscapes data fine annotations
used external data ImageNet
runtime n/a
subsampling 2
submission date April, 2017
previous submissions 1, 2

 

Average results

Metric Value
AP 19.437
AP50% 35.3426
AP100m 31.4466
AP50m 36.8006

 

Class results

Class AP AP50% AP100m AP50m
person 15.5129 33.9822 27.6587 27.4405
rider 14.0919 36.8733 23.0767 23.7214
car 31.5441 48.5032 50.7829 53.4604
truck 22.5102 31.2823 37.9051 47.1182
bus 27.0348 40.057 46.3623 64.3084
train 22.9035 36.2295 33.6579 45.1376
motorcycle 13.9204 32.9197 19.3819 20.1667
bicycle 7.97816 22.8938 12.7473 13.0519

 

Links

Download results as .csv file

Benchmark page