Method Details


Details for method 'Real-time FCN'

 

Method overview

name Real-time FCN
challenge pixel-level semantic labeling
details Combines the following concepts: Network architecture: "Going deeper with convolutions". Szegedy et al., CVPR 2015 Framework and skip connections: "Fully convolutional networks for semantic segmentation". Long et al., CVPR 2015 Context modules: "Multi-scale context aggregation by dilated convolutions". Yu and Kolutin, ICLR 2016
publication Understanding Cityscapes: Efficient Urban Semantic Scene Understanding
Marius Cordts
Dissertation
http://tuprints.ulb.tu-darmstadt.de/6893/
project page / code
used Cityscapes data fine annotations, coarse annotations
used external data ImageNet
runtime 0.044 s
Nvidia Titan X (Pascal)
subsampling no
submission date April, 2017
previous submissions

 

Average results

Metric Value
IoU Classes 72.6319
iIoU Classes 45.4929
IoU Categories 87.9307
iIoU Categories 71.6014

 

Class results

Class IoU iIoU
road 97.9647 -
sidewalk 81.3638 -
building 91.1343 -
wall 44.626 -
fence 50.6688 -
pole 57.3114 -
traffic light 64.1286 -
traffic sign 71.1938 -
vegetation 92.0659 -
terrain 68.5463 -
sky 94.6591 -
person 81.1929 59.1618
rider 61.1798 36.1063
car 94.6045 85.1646
truck 54.4688 25.5687
bus 76.4568 40.0096
train 72.1555 35.5849
motorcycle 57.6049 32.6937
bicycle 68.6808 49.6538

 

Category results

Category IoU iIoU
flat 98.3979 -
nature 91.515 -
object 64.3136 -
sky 94.6591 -
construction 91.3526 -
human 81.5732 60.477
vehicle 93.7034 82.7259

 

Links

Download results as .csv file

Benchmark page