Method Details
Details for method 'GoogLeNet FCN'
Method overview
name | GoogLeNet FCN |
challenge | pixel-level semantic labeling |
details | GoogLeNet No data augmentation, no graphical model Trained by Lukas Schneider, following "Fully Convolutional Networks for Semantic Segmentation", Long et al. CVPR 2015 |
publication | Going Deeper with Convolutions Christian Szegedy , Wei Liu , Yangqing Jia , Pierre Sermanet , Scott Reed , Dragomir Anguelov , Dumitru Erhan , Vincent Vanhoucke , Andrew Rabinovich CVPR 2015 https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf |
project page / code | |
used Cityscapes data | fine annotations |
used external data | ImageNet |
runtime | n/a |
subsampling | no |
submission date | January, 2017 |
previous submissions |
Average results
Metric | Value |
---|---|
IoU Classes | 63.002 |
iIoU Classes | 38.6157 |
IoU Categories | 85.7818 |
iIoU Categories | 69.8078 |
Class results
Class | IoU | iIoU |
---|---|---|
road | 97.4293 | - |
sidewalk | 77.8929 | - |
building | 89.1904 | - |
wall | 35.0269 | - |
fence | 38.975 | - |
pole | 50.6238 | - |
traffic light | 59.805 | - |
traffic sign | 64.09 | - |
vegetation | 91.2205 | - |
terrain | 66.9271 | - |
sky | 93.6679 | - |
person | 76.1969 | 53.9986 |
rider | 45.083 | 28.578 |
car | 92.5667 | 85.0315 |
truck | 33.3506 | 16.9454 |
bus | 40.3751 | 29.5555 |
train | 32.7402 | 19.2803 |
motorcycle | 47.2575 | 25.7402 |
bicycle | 64.6189 | 49.7958 |
Category results
Category | IoU | iIoU |
---|---|---|
flat | 98.1713 | - |
nature | 90.902 | - |
object | 58.6038 | - |
sky | 93.6679 | - |
construction | 89.4582 | - |
human | 78.4386 | 56.3271 |
vehicle | 91.231 | 83.2885 |