Method Details


Details for method 'GoogLeNet FCN'

 

Method overview

name GoogLeNet FCN
challenge pixel-level semantic labeling
details GoogLeNet No data augmentation, no graphical model Trained by Lukas Schneider, following "Fully Convolutional Networks for Semantic Segmentation", Long et al. CVPR 2015
publication Going Deeper with Convolutions
Christian Szegedy , Wei Liu , Yangqing Jia , Pierre Sermanet , Scott Reed , Dragomir Anguelov , Dumitru Erhan , Vincent Vanhoucke , Andrew Rabinovich
CVPR 2015
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
project page / code
used Cityscapes data fine annotations
used external data ImageNet
runtime n/a
subsampling no
submission date January, 2017
previous submissions

 

Average results

Metric Value
IoU Classes 63.002
iIoU Classes 38.6157
IoU Categories 85.7818
iIoU Categories 69.8078

 

Class results

Class IoU iIoU
road 97.4293 -
sidewalk 77.8929 -
building 89.1904 -
wall 35.0269 -
fence 38.975 -
pole 50.6238 -
traffic light 59.805 -
traffic sign 64.09 -
vegetation 91.2205 -
terrain 66.9271 -
sky 93.6679 -
person 76.1969 53.9986
rider 45.083 28.578
car 92.5667 85.0315
truck 33.3506 16.9454
bus 40.3751 29.5555
train 32.7402 19.2803
motorcycle 47.2575 25.7402
bicycle 64.6189 49.7958

 

Category results

Category IoU iIoU
flat 98.1713 -
nature 90.902 -
object 58.6038 -
sky 93.6679 -
construction 89.4582 -
human 78.4386 56.3271
vehicle 91.231 83.2885

 

Links

Download results as .csv file

Benchmark page