Method Details
Details for method 'RGB-D FCN'
Method overview
name | RGB-D FCN |
challenge | pixel-level semantic labeling |
details | GoogLeNet + depth branch, single model no data augmentation, no training on validation set, no graphical model Used coarse labels to initialize depth branch |
publication | Anonymous |
project page / code | |
used Cityscapes data | fine annotations, coarse annotations, stereo |
used external data | ImageNet |
runtime | n/a |
subsampling | no |
submission date | January, 2017 |
previous submissions |
Average results
Metric | Value |
---|---|
IoU Classes | 67.4204 |
iIoU Classes | 42.1229 |
IoU Categories | 87.4826 |
iIoU Categories | 70.9564 |
Class results
Class | IoU | iIoU |
---|---|---|
road | 97.9107 | - |
sidewalk | 81.1994 | - |
building | 90.6619 | - |
wall | 41 | - |
fence | 44.7835 | - |
pole | 56.8196 | - |
traffic light | 65.2701 | - |
traffic sign | 69.4114 | - |
vegetation | 91.8973 | - |
terrain | 68.7004 | - |
sky | 94.7467 | - |
person | 78.924 | 55.9927 |
rider | 52.8694 | 35.4758 |
car | 93.1197 | 85.7791 |
truck | 38.7713 | 22.2602 |
bus | 53.1 | 33.495 |
train | 43.7236 | 23.3357 |
motorcycle | 51.0407 | 30.0223 |
bicycle | 67.0382 | 50.6219 |
Category results
Category | IoU | iIoU |
---|---|---|
flat | 98.3547 | - |
nature | 91.5541 | - |
object | 64.2866 | - |
sky | 94.7467 | - |
construction | 90.8811 | - |
human | 80.2521 | 58.0457 |
vehicle | 92.3032 | 83.8671 |