Method Details


Details for method 'RGB-D FCN'

 

Method overview

name RGB-D FCN
challenge pixel-level semantic labeling
details GoogLeNet + depth branch, single model no data augmentation, no training on validation set, no graphical model Used coarse labels to initialize depth branch
publication Anonymous
project page / code
used Cityscapes data fine annotations, coarse annotations, stereo
used external data ImageNet
runtime n/a
subsampling no
submission date January, 2017
previous submissions

 

Average results

Metric Value
IoU Classes 67.4204
iIoU Classes 42.1229
IoU Categories 87.4826
iIoU Categories 70.9564

 

Class results

Class IoU iIoU
road 97.9107 -
sidewalk 81.1994 -
building 90.6619 -
wall 41 -
fence 44.7835 -
pole 56.8196 -
traffic light 65.2701 -
traffic sign 69.4114 -
vegetation 91.8973 -
terrain 68.7004 -
sky 94.7467 -
person 78.924 55.9927
rider 52.8694 35.4758
car 93.1197 85.7791
truck 38.7713 22.2602
bus 53.1 33.495
train 43.7236 23.3357
motorcycle 51.0407 30.0223
bicycle 67.0382 50.6219

 

Category results

Category IoU iIoU
flat 98.3547 -
nature 91.5541 -
object 64.2866 -
sky 94.7467 -
construction 90.8811 -
human 80.2521 58.0457
vehicle 92.3032 83.8671

 

Links

Download results as .csv file

Benchmark page