Method Details


Details for method 'FCN 8s'

 

Method overview

name FCN 8s
challenge pixel-level semantic labeling
details Trained by Marius Cordts on a pre-release version of the dataset
publication Fully Convolutional Networks for Semantic Segmentation
J. Long, E. Shelhamer, and T. Darrell
CVPR 2015
http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf
project page / code http://fcn.berkeleyvision.org/
used Cityscapes data fine annotations
used external data ImageNet, Pascal Context
runtime 0.5 s
Nvidia Titan X
subsampling no
submission date March, 2016
previous submissions

 

Average results

Metric Value
IoU Classes 65.3254
iIoU Classes 41.7038
IoU Categories 85.6742
iIoU Categories 70.1393

 

Class results

Class IoU iIoU
road 97.406 -
sidewalk 78.4065 -
building 89.2114 -
wall 34.9328 -
fence 44.2369 -
pole 47.4143 -
traffic light 60.0832 -
traffic sign 65.0173 -
vegetation 91.4171 -
terrain 69.2969 -
sky 93.8604 -
person 77.1373 55.9347
rider 51.4129 33.3743
car 92.628 83.9126
truck 35.2722 22.2475
bus 48.5751 30.7803
train 46.5414 26.6649
motorcycle 51.569 31.0826
bicycle 66.7635 49.6335

 

Category results

Category IoU iIoU
flat 98.2462 -
nature 91.1283 -
object 57.0125 -
sky 93.8604 -
construction 89.6176 -
human 78.5849 57.9571
vehicle 91.2693 82.3215

 

Links

Download results as .csv file

Benchmark page