Method Details


Details for method 'LDN-161'

 

Method overview

name LDN-161
challenge pixel-level semantic labeling
details Ladder DenseNet-161 trained on train+val, fine labels only. Inference on multi-scale inputs.
publication Efficient Ladder-style DenseNets for Semantic Segmentation of Large Images
Ivan Kreso, Josip Krapac, Sinisa Segvic
project page / code
used Cityscapes data fine annotations
used external data ImageNet
runtime 2 s
Titan Xp
subsampling no
submission date March, 2019
previous submissions

 

Average results

Metric Value
IoU Classes 80.5992
iIoU Classes 56.4058
IoU Categories 91.2556
iIoU Categories 79.1492

 

Class results

Class IoU iIoU
road 98.6764 -
sidewalk 86.5149 -
building 93.5696 -
wall 61.8064 -
fence 60.9124 -
pole 68.2921 -
traffic light 75.5513 -
traffic sign 80.101 -
vegetation 93.7126 -
terrain 72.4412 -
sky 95.819 -
person 86.8302 68.1522
rider 72.2111 48.4005
car 96.1006 91.2092
truck 72.3375 39.097
bus 88.7623 50.1747
train 80.7035 48.8461
motorcycle 69.9344 43.8063
bicycle 77.1087 61.5604

 

Category results

Category IoU iIoU
flat 98.7283 -
nature 93.3979 -
object 74.3379 -
sky 95.819 -
construction 93.7974 -
human 86.9561 69.1311
vehicle 95.7524 89.1673

 

Links

Download results as .csv file

Benchmark page