Method Details
Details for method 'LDN-161'
Method overview
name | LDN-161 |
challenge | pixel-level semantic labeling |
details | Ladder DenseNet-161 trained on train+val, fine labels only. Inference on multi-scale inputs. |
publication | Efficient Ladder-style DenseNets for Semantic Segmentation of Large Images Ivan Kreso, Josip Krapac, Sinisa Segvic |
project page / code | |
used Cityscapes data | fine annotations |
used external data | ImageNet |
runtime | 2 s Titan Xp |
subsampling | no |
submission date | March, 2019 |
previous submissions |
Average results
Metric | Value |
---|---|
IoU Classes | 80.5992 |
iIoU Classes | 56.4058 |
IoU Categories | 91.2556 |
iIoU Categories | 79.1492 |
Class results
Class | IoU | iIoU |
---|---|---|
road | 98.6764 | - |
sidewalk | 86.5149 | - |
building | 93.5696 | - |
wall | 61.8064 | - |
fence | 60.9124 | - |
pole | 68.2921 | - |
traffic light | 75.5513 | - |
traffic sign | 80.101 | - |
vegetation | 93.7126 | - |
terrain | 72.4412 | - |
sky | 95.819 | - |
person | 86.8302 | 68.1522 |
rider | 72.2111 | 48.4005 |
car | 96.1006 | 91.2092 |
truck | 72.3375 | 39.097 |
bus | 88.7623 | 50.1747 |
train | 80.7035 | 48.8461 |
motorcycle | 69.9344 | 43.8063 |
bicycle | 77.1087 | 61.5604 |
Category results
Category | IoU | iIoU |
---|---|---|
flat | 98.7283 | - |
nature | 93.3979 | - |
object | 74.3379 | - |
sky | 95.819 | - |
construction | 93.7974 | - |
human | 86.9561 | 69.1311 |
vehicle | 95.7524 | 89.1673 |