Method Details


Details for method 'ShuffleNet v2 + DPC'

 

Method overview

name ShuffleNet v2 + DPC
challenge pixel-level semantic labeling
details ShuffleNet v2 with DPC at output_stride 16.
publication An efficient solution for semantic segmentation: ShuffleNet V2 with atrous separable convolutions
Sercan Turkmen, Janne Heikkila
https://arxiv.org/abs/1902.07476
project page / code https://github.com/sercant/mobile-segmentation
used Cityscapes data fine annotations, coarse annotations
used external data ImageNet, MS COCO 2017
runtime n/a
subsampling no
submission date February, 2019
previous submissions

 

Average results

Metric Value
IoU Classes 70.3332
iIoU Classes 43.5792
IoU Categories 86.4752
iIoU Categories 69.9179

 

Class results

Class IoU iIoU
road 98.1109 -
sidewalk 82.4585 -
building 90.7032 -
wall 51.3065 -
fence 50.9301 -
pole 51.4732 -
traffic light 61.2217 -
traffic sign 66.9256 -
vegetation 91.7018 -
terrain 68.5318 -
sky 93.8697 -
person 78.4704 55.4565
rider 59.7277 34.9161
car 93.9507 85.6976
truck 59.0531 26.9855
bus 68.0789 35.6205
train 48.0689 30.3736
motorcycle 54.2689 30.6279
bicycle 67.4792 48.9562

 

Category results

Category IoU iIoU
flat 98.2582 -
nature 91.2845 -
object 59.5333 -
sky 93.8697 -
construction 90.8674 -
human 78.5613 56.7018
vehicle 92.9521 83.134

 

Links

Download results as .csv file

Benchmark page