Method Details


Details for method 'LiteSeg-Shufflenet'

 

Method overview

name LiteSeg-Shufflenet
challenge pixel-level semantic labeling
details
publication LiteSeg: A Litewiegth ConvNet for Semantic Segmentation
Taha Emara, Hossam E. Abd El Munim, Hazem M. Abbas
DICTA 2019
https://arxiv.org/abs/1912.06683
project page / code https://github.com/tahaemara/LiteSeg
used Cityscapes data fine annotations, coarse annotations
used external data
runtime 0.007518 s
Intel Core i7-8700 @ 3.2GHZ, 16GB memory, and NVIDIA GTX1080Ti GPU card. Input image resolution 360X640.
subsampling no
submission date January, 2019
previous submissions

 

Average results

Metric Value
IoU Classes 65.1725
iIoU Classes 41.0075
IoU Categories 85.3995
iIoU Categories 67.2767

 

Class results

Class IoU iIoU
road 97.0818 -
sidewalk 77.8785 -
building 89.4798 -
wall 41.8202 -
fence 42.5491 -
pole 49.8056 -
traffic light 52.9251 -
traffic sign 65.5972 -
vegetation 91.4841 -
terrain 67.7983 -
sky 93.9913 -
person 76.1197 52.6705
rider 50.1027 33.2528
car 91.4479 81.7381
truck 43.3791 22.748
bus 51.7873 33.6613
train 48.0271 30.6558
motorcycle 44.337 26.5861
bicycle 62.6648 46.7478

 

Category results

Category IoU iIoU
flat 97.8841 -
nature 91.2236 -
object 57.4361 -
sky 93.9913 -
construction 89.6993 -
human 77.277 55.0089
vehicle 90.2848 79.5445

 

Links

Download results as .csv file

Benchmark page