Method Details
Details for method 'LiteSeg-Shufflenet'
Method overview
name | LiteSeg-Shufflenet |
challenge | pixel-level semantic labeling |
details | |
publication | LiteSeg: A Litewiegth ConvNet for Semantic Segmentation Taha Emara, Hossam E. Abd El Munim, Hazem M. Abbas DICTA 2019 https://arxiv.org/abs/1912.06683 |
project page / code | https://github.com/tahaemara/LiteSeg |
used Cityscapes data | fine annotations, coarse annotations |
used external data | |
runtime | 0.007518 s Intel Core i7-8700 @ 3.2GHZ, 16GB memory, and NVIDIA GTX1080Ti GPU card. Input image resolution 360X640. |
subsampling | no |
submission date | January, 2019 |
previous submissions |
Average results
Metric | Value |
---|---|
IoU Classes | 65.1725 |
iIoU Classes | 41.0075 |
IoU Categories | 85.3995 |
iIoU Categories | 67.2767 |
Class results
Class | IoU | iIoU |
---|---|---|
road | 97.0818 | - |
sidewalk | 77.8785 | - |
building | 89.4798 | - |
wall | 41.8202 | - |
fence | 42.5491 | - |
pole | 49.8056 | - |
traffic light | 52.9251 | - |
traffic sign | 65.5972 | - |
vegetation | 91.4841 | - |
terrain | 67.7983 | - |
sky | 93.9913 | - |
person | 76.1197 | 52.6705 |
rider | 50.1027 | 33.2528 |
car | 91.4479 | 81.7381 |
truck | 43.3791 | 22.748 |
bus | 51.7873 | 33.6613 |
train | 48.0271 | 30.6558 |
motorcycle | 44.337 | 26.5861 |
bicycle | 62.6648 | 46.7478 |
Category results
Category | IoU | iIoU |
---|---|---|
flat | 97.8841 | - |
nature | 91.2236 | - |
object | 57.4361 | - |
sky | 93.9913 | - |
construction | 89.6993 | - |
human | 77.277 | 55.0089 |
vehicle | 90.2848 | 79.5445 |