Method Details


Details for method 'LDN-121'

 

Method overview

name LDN-121
challenge pixel-level semantic labeling
details Ladder DenseNet-121 trained on train+val, fine labels only. Single-scale inference.
publication Efficient Ladder-style DenseNets for Semantic Segmentation of Large Images
Ivan Kreso, Josip Krapac, Sinisa Segvic
project page / code
used Cityscapes data fine annotations
used external data ImageNet
runtime 0.048 s
Titan Xp
subsampling no
submission date November, 2018
previous submissions

 

Average results

Metric Value
IoU Classes 79.3324
iIoU Classes 54.6514
IoU Categories 90.6872
iIoU Categories 78.3689

 

Class results

Class IoU iIoU
road 98.5756 -
sidewalk 85.7844 -
building 93.1336 -
wall 58.0861 -
fence 59.3712 -
pole 66.0433 -
traffic light 74.1095 -
traffic sign 77.6975 -
vegetation 93.4942 -
terrain 71.501 -
sky 95.6594 -
person 85.706 67.2539
rider 69.3867 45.1931
car 95.8925 89.9977
truck 71.2801 38.1393
bus 86.4959 46.6913
train 83.5224 47.9513
motorcycle 66.396 41.1216
bicycle 75.1806 60.8627

 

Category results

Category IoU iIoU
flat 98.6893 -
nature 93.1646 -
object 72.4881 -
sky 95.6594 -
construction 93.3384 -
human 86.0968 68.6302
vehicle 95.374 88.1076

 

Links

Download results as .csv file

Benchmark page