Method Details
Details for method 'SQ'
Method overview
name | SQ |
challenge | pixel-level semantic labeling |
details | |
publication | Speeding up Semantic Segmentation for Autonomous Driving Michael Treml, José Arjona-Medina, Thomas Unterthiner, Rupesh Durgesh, Felix Friedmann, Peter Schuberth, Andreas Mayr, Martin Heusel, Markus Hofmarcher, Michael Widrich, Bernhard Nessler, Sepp Hochreiter NIPS 2016 Workshop - MLITS Machine Learning for Intelligent Transportation Systems Neural Information Processing Systems 2016, Barcelona, Spain https://openreview.net/pdf?id=S1uHiFyyg |
project page / code | |
used Cityscapes data | fine annotations |
used external data | ImageNet |
runtime | 0.06 s Nvidia TX1 for 480 x 320 |
subsampling | no |
submission date | October, 2016 |
previous submissions |
Average results
Metric | Value |
---|---|
IoU Classes | 59.8406 |
iIoU Classes | 32.2562 |
IoU Categories | 84.3166 |
iIoU Categories | 65.9716 |
Class results
Class | IoU | iIoU |
---|---|---|
road | 96.9235 | - |
sidewalk | 75.3709 | - |
building | 87.8555 | - |
wall | 31.5868 | - |
fence | 35.6884 | - |
pole | 50.9243 | - |
traffic light | 52.0044 | - |
traffic sign | 61.659 | - |
vegetation | 90.8987 | - |
terrain | 65.7836 | - |
sky | 93.0496 | - |
person | 73.8124 | 47.834 |
rider | 42.5881 | 21.7396 |
car | 91.4894 | 84.6342 |
truck | 18.8325 | 7.76417 |
bus | 41.247 | 20.991 |
train | 33.3277 | 16.6256 |
motorcycle | 34.0351 | 14.8569 |
bicycle | 59.8937 | 43.6044 |
Category results
Category | IoU | iIoU |
---|---|---|
flat | 96.6666 | - |
nature | 90.431 | - |
object | 57.0409 | - |
sky | 93.0496 | - |
construction | 87.4571 | - |
human | 75.6384 | 49.9549 |
vehicle | 89.9324 | 81.9882 |