Method Details


Details for method 'SQ'

 

Method overview

name SQ
challenge pixel-level semantic labeling
details
publication Speeding up Semantic Segmentation for Autonomous Driving
Michael Treml, José Arjona-Medina, Thomas Unterthiner, Rupesh Durgesh, Felix Friedmann, Peter Schuberth, Andreas Mayr, Martin Heusel, Markus Hofmarcher, Michael Widrich, Bernhard Nessler, Sepp Hochreiter
NIPS 2016 Workshop - MLITS Machine Learning for Intelligent Transportation Systems Neural Information Processing Systems 2016, Barcelona, Spain
https://openreview.net/pdf?id=S1uHiFyyg
project page / code
used Cityscapes data fine annotations
used external data ImageNet
runtime 0.06 s
Nvidia TX1 for 480 x 320
subsampling no
submission date October, 2016
previous submissions

 

Average results

Metric Value
IoU Classes 59.8406
iIoU Classes 32.2562
IoU Categories 84.3166
iIoU Categories 65.9716

 

Class results

Class IoU iIoU
road 96.9235 -
sidewalk 75.3709 -
building 87.8555 -
wall 31.5868 -
fence 35.6884 -
pole 50.9243 -
traffic light 52.0044 -
traffic sign 61.659 -
vegetation 90.8987 -
terrain 65.7836 -
sky 93.0496 -
person 73.8124 47.834
rider 42.5881 21.7396
car 91.4894 84.6342
truck 18.8325 7.76417
bus 41.247 20.991
train 33.3277 16.6256
motorcycle 34.0351 14.8569
bicycle 59.8937 43.6044

 

Category results

Category IoU iIoU
flat 96.6666 -
nature 90.431 -
object 57.0409 -
sky 93.0496 -
construction 87.4571 -
human 75.6384 49.9549
vehicle 89.9324 81.9882

 

Links

Download results as .csv file

Benchmark page