Method Details


Details for method 'SwiftNetRN-18'

 

Method overview

name SwiftNetRN-18
challenge pixel-level semantic labeling
details
publication In Defense of Pre-trained ImageNet Architectures for Real-time Semantic Segmentation of Road-driving Images
Marin Oršić, Ivan Krešo, Petra Bevandić, Siniša Šegvić
CVPR 2019
https://openaccess.thecvf.com/content_CVPR_2019/papers/Orsic_In_Defense_of_Pre-Trained_ImageNet_Architectures_for_Real-Time_Semantic_Segmentation_CVPR_2019_paper.pdf
project page / code https://github.com/orsic/swiftnet
used Cityscapes data fine annotations
used external data ImageNet
runtime 0.0243 s
GTX1080Ti
subsampling no
submission date November, 2018
previous submissions

 

Average results

Metric Value
IoU Classes 75.5106
iIoU Classes 51.9937
IoU Categories 89.8312
iIoU Categories 77.1644

 

Class results

Class IoU iIoU
road 98.3159 -
sidewalk 83.8554 -
building 92.2075 -
wall 46.3184 -
fence 52.7606 -
pole 63.2448 -
traffic light 70.5667 -
traffic sign 75.8098 -
vegetation 93.1035 -
terrain 70.3177 -
sky 95.429 -
person 84.0265 65.4996
rider 64.5358 43.5209
car 95.2662 89.1742
truck 63.8568 33.0262
bus 77.9548 43.8256
train 71.9326 44.3719
motorcycle 61.5698 37.7429
bicycle 73.6306 58.7882

 

Category results

Category IoU iIoU
flat 98.6104 -
nature 92.7508 -
object 70.0035 -
sky 95.429 -
construction 92.5975 -
human 84.7349 67.2306
vehicle 94.6925 87.0982

 

Links

Download results as .csv file

Benchmark page