Method Details


Details for method 'Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth'

 

Method overview

name Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth
challenge instance-level semantic labeling
details Fine only - ERFNet backbone
publication Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth
Davy Neven, Bert De Brabandere, Marc Proesmans and Luc Van Gool
CVPR 2019
http://openaccess.thecvf.com/content_CVPR_2019/papers/Neven_Instance_Segmentation_by_Jointly_Optimizing_Spatial_Embeddings_and_Clustering_Bandwidth_CVPR_2019_paper.html
project page / code https://github.com/davyneven/SpatialEmbeddings
used Cityscapes data fine annotations
used external data
runtime 0.1 s
Nvidia 1080 ti
subsampling no
submission date October, 2018
previous submissions

 

Average results

Metric Value
AP 27.6526
AP50% 50.8803
AP100m 37.8283
AP50m 37.3337

 

Class results

Class AP AP50% AP100m AP50m
person 34.5089 65.0544 49.8588 49.3945
rider 26.0957 58.7783 36.9226 36.9831
car 52.4051 75.3141 71.1283 72.4886
truck 21.6719 33.1038 26.2447 24.2227
bus 31.1974 45.1526 43.5917 43.522
train 16.3798 32.4482 22.6754 19.577
motorcycle 20.0665 48.4046 25.1995 25.9785
bicycle 18.8954 48.7862 27.0055 26.5031

 

Links

Download results as .csv file

Benchmark page