Method Details


Details for method 'EDANet'

 

Method overview

name EDANet
challenge pixel-level semantic labeling
details Training data: Fine annotations only (train+val. set, 2975+500 images) without any pretraining nor coarse annotations. For training on fine annotations (train set only, 2975 images), it attains a mIoU of 66.3%. Runtime: (resolution 512x1024) 0.0092s on a single GTX 1080Ti, 0.0123s on a single Titan X.
publication Efficient Dense Modules of Asymmetric Convolution for Real-Time Semantic Segmentation
Shao-Yuan Lo (NCTU), Hsueh-Ming Hang (NCTU), Sheng-Wei Chan (ITRI), Jing-Jhih Lin (ITRI)
https://arxiv.org/abs/1809.06323
project page / code https://github.com/shaoyuanlo/EDANet
used Cityscapes data fine annotations
used external data
runtime 0.0092 s
GTX 1080Ti
subsampling 2
submission date August, 2018
previous submissions

 

Average results

Metric Value
IoU Classes 67.3152
iIoU Classes 41.7828
IoU Categories 85.7516
iIoU Categories 69.9239

 

Class results

Class IoU iIoU
road 97.7698 -
sidewalk 80.6318 -
building 89.5359 -
wall 41.9571 -
fence 45.9684 -
pole 52.3381 -
traffic light 59.8394 -
traffic sign 64.9868 -
vegetation 91.3691 -
terrain 68.655 -
sky 93.5875 -
person 75.7286 54.9287
rider 54.2667 32.7323
car 92.4132 85.1025
truck 40.8629 18.5793
bus 58.7039 35.4491
train 55.9702 31.9444
motorcycle 50.4192 28.4388
bicycle 63.985 47.0872

 

Category results

Category IoU iIoU
flat 98.1298 -
nature 90.9651 -
object 59.6403 -
sky 93.5875 -
construction 89.8326 -
human 76.5412 56.597
vehicle 91.5649 83.2509

 

Links

Download results as .csv file

Benchmark page