Method Details


Details for method 'kMaX-DeepLab [Cityscapes-fine]'

 

Method overview

name kMaX-DeepLab [Cityscapes-fine]
challenge panoptic semantic labeling
details kMaX-DeepLab w/ ConvNeXt-L backbone (ImageNet-22k + 1k pretrained). This result is obtained by the kMaX-DeepLab trained for Panoptic Segmentation task. No test-time augmentation or other external dataset.
publication k-means Mask Transformer
Qihang Yu, Huiyu Wang, Siyuan Qiao, Maxwell Collins, Yukun Zhu, Hartwig Adam, Alan Yuille, Liang-Chieh Chen
ECCV 2022
https://arxiv.org/abs/2207.04044
project page / code https://github.com/google-research/deeplab2
used Cityscapes data fine annotations
used external data ImageNet 22k + 1k
runtime n/a
subsampling no
submission date March, 2022
previous submissions

 

Average results

Metric AllThingsStuff
PQ 66.165 59.5886 70.9479
SQ 84.0247 82.6127 85.0515
RQ 77.9242 71.9318 82.2824

 

Class results

Class PQ SQ RQ
road 98.6459 98.711 99.9341
sidewalk 79.6408 86.3763 92.2022
building 89.8165 91.9254 97.7058
wall 45.5835 79.3626 57.4371
fence 45.864 78.4888 58.4337
pole 60.0506 73.5551 81.6403
traffic light 57.6235 78.6862 73.232
traffic sign 72.1203 82.6752 87.2332
vegetation 91.2221 92.1652 98.9768
terrain 48.6562 80.256 60.6262
sky 91.2031 93.3648 97.6847
person 56.0083 79.7248 70.2521
rider 56.6275 76.4088 74.1113
car 68.9085 86.201 79.9393
truck 57.658 88.4567 65.1822
bus 69.1579 89.3903 77.3663
train 67.7682 87.869 77.1242
motorcycle 53.414 78.6676 67.8984
bicycle 47.1663 74.1835 63.5805

 

Links

Download results as .csv file

Benchmark page