Method Details


Details for method 'kMaX-DeepLab [Cityscapes-fine]'

 

Method overview

name kMaX-DeepLab [Cityscapes-fine]
challenge pixel-level semantic labeling
details kMaX-DeepLab w/ ConvNeXt-L backbone (ImageNet-22k + 1k pretrained). This result is obtained by the kMaX-DeepLab trained for Panoptic Segmentation task. No test-time augmentation or other external dataset.
publication k-means Mask Transformer
Qihang Yu, Huiyu Wang, Siyuan Qiao, Maxwell Collins, Yukun Zhu, Hartwig Adam, Alan Yuille, and Liang-Chieh Chen
ECCV 2022
https://arxiv.org/abs/2207.04044
project page / code https://github.com/google-research/deeplab2
used Cityscapes data fine annotations
used external data ImageNet 22k + 1k
runtime n/a
subsampling no
submission date March, 2022
previous submissions

 

Average results

Metric Value
IoU Classes 83.1551
iIoU Classes 65.8603
IoU Categories 92.3151
iIoU Categories 82.6771

 

Class results

Class IoU iIoU
road 98.8487 -
sidewalk 88.2571 -
building 94.2578 -
wall 63.5207 -
fence 67.5075 -
pole 71.8943 -
traffic light 79.7129 -
traffic sign 83.2563 -
vegetation 94.0891 -
terrain 73.5139 -
sky 96.1995 -
person 88.7009 76.0701
rider 77.529 58.4487
car 96.6748 89.4182
truck 83.1386 54.4387
bus 90.3213 66.9697
train 82.6068 60.4399
motorcycle 75.4474 58.7047
bicycle 74.471 62.3926

 

Category results

Category IoU iIoU
flat 98.7857 -
nature 93.8191 -
object 77.7917 -
sky 96.1995 -
construction 94.5083 -
human 88.9364 76.9856
vehicle 96.1647 88.3687

 

Links

Download results as .csv file

Benchmark page