Method Details


Details for method 'ENet'

 

Method overview

name ENet
challenge pixel-level semantic labeling
details
publication ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation
Adam Paszke, Abhishek Chaurasia, Sangpil Kim, Eugenio Culurciello
https://arxiv.org/abs/1606.02147
project page / code https://github.com/e-lab/ENet-training
used Cityscapes data fine annotations
used external data
runtime 0.013 s
NVIDIA Titan X
subsampling 2
submission date May, 2016
previous submissions

 

Average results

Metric Value
IoU Classes 58.2878
iIoU Classes 34.363
IoU Categories 80.3973
iIoU Categories 63.9772

 

Class results

Class IoU iIoU
road 96.3273 -
sidewalk 74.2395 -
building 85.0487 -
wall 32.1642 -
fence 33.2327 -
pole 43.4502 -
traffic light 34.1022 -
traffic sign 44.0244 -
vegetation 88.6077 -
terrain 61.3903 -
sky 90.6385 -
person 65.5102 47.6293
rider 38.4262 20.7912
car 90.5971 80.0338
truck 36.9046 17.5274
bus 50.5119 26.8045
train 48.0834 21.8271
motorcycle 38.8017 20.8791
bicycle 55.4076 39.4118

 

Category results

Category IoU iIoU
flat 97.3417 -
nature 88.2815 -
object 46.7501 -
sky 90.6385 -
construction 85.4022 -
human 65.4968 49.2703
vehicle 88.87 78.684

 

Links

Download results as .csv file

Benchmark page