Method Details
Details for method 'ENet'
Method overview
name | ENet |
challenge | pixel-level semantic labeling |
details | |
publication | ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation Adam Paszke, Abhishek Chaurasia, Sangpil Kim, Eugenio Culurciello https://arxiv.org/abs/1606.02147 |
project page / code | https://github.com/e-lab/ENet-training |
used Cityscapes data | fine annotations |
used external data | |
runtime | 0.013 s NVIDIA Titan X |
subsampling | 2 |
submission date | May, 2016 |
previous submissions |
Average results
Metric | Value |
---|---|
IoU Classes | 58.2878 |
iIoU Classes | 34.363 |
IoU Categories | 80.3973 |
iIoU Categories | 63.9772 |
Class results
Class | IoU | iIoU |
---|---|---|
road | 96.3273 | - |
sidewalk | 74.2395 | - |
building | 85.0487 | - |
wall | 32.1642 | - |
fence | 33.2327 | - |
pole | 43.4502 | - |
traffic light | 34.1022 | - |
traffic sign | 44.0244 | - |
vegetation | 88.6077 | - |
terrain | 61.3903 | - |
sky | 90.6385 | - |
person | 65.5102 | 47.6293 |
rider | 38.4262 | 20.7912 |
car | 90.5971 | 80.0338 |
truck | 36.9046 | 17.5274 |
bus | 50.5119 | 26.8045 |
train | 48.0834 | 21.8271 |
motorcycle | 38.8017 | 20.8791 |
bicycle | 55.4076 | 39.4118 |
Category results
Category | IoU | iIoU |
---|---|---|
flat | 97.3417 | - |
nature | 88.2815 | - |
object | 46.7501 | - |
sky | 90.6385 | - |
construction | 85.4022 | - |
human | 65.4968 | 49.2703 |
vehicle | 88.87 | 78.684 |