Method Details


Details for method 'SkipNet-MobileNet'

 

Method overview

name SkipNet-MobileNet
challenge pixel-level semantic labeling
details An efficient realtime semantic segmentation network with skip connections based on MobileNet.
publication RTSeg: Real-time Semantic Segmentation Framework
Mennatullah Siam, Mostafa Gamal, Moemen Abdel-Razek, Senthil Yogamani, Martin Jagersand
Under Review by ICIP 2018
project page / code
used Cityscapes data fine annotations, coarse annotations
used external data ImageNet
runtime n/a
subsampling no
submission date February, 2018
previous submissions

 

Average results

Metric Value
IoU Classes 61.5187
iIoU Classes 35.1625
IoU Categories 82.0049
iIoU Categories 63.0336

 

Class results

Class IoU iIoU
road 95.8212 -
sidewalk 73.9302 -
building 86.1912 -
wall 36.6672 -
fence 39.3956 -
pole 44.5331 -
traffic light 47.244 -
traffic sign 54.339 -
vegetation 89.537 -
terrain 66.0146 -
sky 92.8904 -
person 69.2514 45.3982
rider 45.0519 26.0624
car 89.8774 80.1466
truck 35.6011 17.5923
bus 53.9098 27.572
train 45.615 23.4945
motorcycle 44.8316 22.1059
bicycle 58.1534 38.9283

 

Category results

Category IoU iIoU
flat 95.8675 -
nature 89.0597 -
object 51.4782 -
sky 92.8904 -
construction 85.9808 -
human 70.4409 47.6219
vehicle 88.3165 78.4453

 

Links

Download results as .csv file

Benchmark page