Method Details


Details for method 'ShuffleSeg'

 

Method overview

name ShuffleSeg
challenge pixel-level semantic labeling
details ShuffleSeg: An efficient realtime semantic segmentation network with skip connections and ShuffleNet units
publication ShuffleSeg: Real-time Semantic Segmentation Network
Mostafa Gamal, Mennatullah Siam, Mo'men Abdel-Razek
Under Review by ICIP 2018
project page / code
used Cityscapes data fine annotations, coarse annotations
used external data ImageNet
runtime n/a
subsampling no
submission date February, 2018
previous submissions

 

Average results

Metric Value
IoU Classes 58.2887
iIoU Classes 32.355
IoU Categories 80.2131
iIoU Categories 62.178

 

Class results

Class IoU iIoU
road 95.579 -
sidewalk 71.9893 -
building 85.1398 -
wall 31.8614 -
fence 33.7053 -
pole 39.3765 -
traffic light 44.0418 -
traffic sign 51.1458 -
vegetation 88.7066 -
terrain 63.8078 -
sky 92.4633 -
person 64.4464 43.9567
rider 38.4605 19.9293
car 89.1157 79.9923
truck 36.9667 16.1791
bus 51.0959 22.6752
train 40.895 22.2188
motorcycle 35.8694 16.2078
bicycle 52.8197 37.6807

 

Category results

Category IoU iIoU
flat 95.421 -
nature 88.1898 -
object 46.905 -
sky 92.4633 -
construction 84.7124 -
human 66.4496 46.502
vehicle 87.3501 77.8539

 

Links

Download results as .csv file

Benchmark page