Method Details


Details for method 'PolygonRNN++'

 

Method overview

name PolygonRNN++
challenge instance-level semantic labeling
details
publication Efficient Annotation of Segmentation Datasets with Polygon-RNN++
D. Acuna, H. Ling, A. Kar, and S. Fidler
CVPR 2018
https://arxiv.org/abs/1803.09693
project page / code http://www.cs.toronto.edu/polyrnn/
used Cityscapes data fine annotations
used external data ImageNet
runtime n/a
subsampling no
submission date February, 2018
previous submissions

 

Average results

Metric Value
AP 25.4856
AP50% 45.4693
AP100m 39.3141
AP50m 43.4099

 

Class results

Class AP AP50% AP100m AP50m
person 29.3598 54.9815 49.6394 50.086
rider 21.7923 49.2541 34.5972 35.1537
car 48.2971 69.9941 69.3161 72.6777
truck 21.1291 29.7407 32.3922 41.2953
bus 32.3369 47.4636 52.4865 62.1108
train 23.7278 41.4335 36.0809 44.7549
motorcycle 13.6035 34.0887 18.2702 19.1054
bicycle 13.6385 36.7985 21.7301 22.0958

 

Links

Download results as .csv file

Benchmark page